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Abstract In the framework of quantum perturbation

theory the self-consistent method of calculation of electron

scattering rates in nanowires with the one-dimensional

electron gas in the quantum limit is worked out. The

developed method allows both the collisional broadening

and the quantum correlations between scattering events to

be taken into account. It is an alternative per se to the Fock

approximation for the self-energy approach based on

Green’s function formalism. However this approach is free

of mathematical difficulties typical to the Fock approxi-

mation. Moreover, the developed method is simpler than

the Fock approximation from the computational point of

view. Using the approximation of stable one-particle

quantum states it is proved that the electron scattering

processes determine the dependence of electron energy

versus its wave vector.

Keywords Nanowire � Electron scattering � Electron

quantum states � Collisional broadening � Quantum

correlations

Introduction

Presently the interest to nanoscale electronics increases

dramatically. At that the great attention is paid to

structures containing the one-dimensional electron gas

such as nanowires and nanotubes. However, to develop

devices using structures like that [1, 2] it is necessary to

have the profound description of the kinetic processes

determining the electrophysics of the structures with

one-dimensional electron gas. The description of the

kinetic processes calls forth the need of developing the

theory of electron scattering in nanoscale structures with

one-dimensional electron gas. For example, in Ref. [3]

the model of electron transport in the armchair single-

wall carbon nanotubes has been developed. This model is

based on the numerical solution of the Boltzmann

equation. It allows the current-voltage characteristics to

be calculated with high concordance with results of

experiments. While creating this model some questions

concerning the features of electron scattering in cylin-

drical symmetry quantum systems have been cleared up.

At the same time while developing a similar model of

electron transport in nanowires, taking into account the

high-order quantum effects (the collisional broadening

and the quantum correlations between scattering events)

(see, for example, Refs. [4–8]), we have met a problem.

It is turned out that some obtained results are in con-

tradiction to the fundamental physical principles. This

paper is devoted to description of the essence of the

problem and the way to solve it.

Theory

It is known when the quasi-classical one-particle

(Hartree-Fock) approximation [9–11] is valid to describe

the electron transport, the state of one-dimensional elec-

tron gas is determined by the Boltzmann transport

equation [3, 11–14]

d

dt
þ bI

� �

f ðx; k; tÞ ¼ 0; ð1Þ
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where bI is the collisional operator, f is the electron distri-

bution function, x is the coordinate along nanowire, k is the

electron wave vector, t is the time.

If the electric field is absent the electron gas is in the

equilibrium state. Consequently, electron energy distribu-

tion function is the Fermi-Dirac one, i.e. the following

equation is valid

bI f ðkÞ ¼ bI fFðkÞ ¼ 0; ð2Þ

where fF is the Fermi-Dirac distribution function.

If the scattering rates in one-dimensional electron gas

are calculated according to the Fermi golden rule [9, 15]

taking into account nonparabolicity [12, 13] as well as

neglecting the latter it is easy to make sure that Eq. (2) is

valid. However, when the scattering rates are calculated

taking into account high-order quantum effects such as the

collisional broadening [4–8] and the quantum correlations

between scattering events [4], Eq. (2) is no longer valid.

Thus in this case we should split Eq. (2) in

bI f ðkÞ ¼ 0; ð3Þ

bI fFðkÞ 6¼ 0: ð4Þ

It results in f „ fF.

Thus, the contradiction takes place. From one hand,

electrons should be distributed according to the Fermi-

Dirac law [9–11, 14] without regard to presence or absence

of scattering. It is called forth by the antisymmetry of the

wave function of electron gas at the considered approxi-

mation. From other hand, the distribution function should

be in accord with Boltzmann equation. Nevertheless, it is

impossible according to Eqs. (3) and (4).

This contradiction can be easily explained taking into

account that as a matter of fact the Boltzmann transport

equation is nothing but approximation of the Liouville

quantum equation [9, 16] at smooth and slowly varying

potential (i) and using the approximation of stable

one-particle quantum states [11] for all calculated physical

quantities (ii). When one calculates a physical quantity

beyond these approximations and substitutes it into the

Boltzmann equation the obtained results contradict the

fundamental physical principles. Thus, the considering

contradiction (see Eqs. (3) and (4)) is caused by violation

of the approximations that the electron quantum states are

stable or/and one-particle while calculating the electron

scattering rates taking into account the high-order quantum

effects [4–8].

Generally speaking, there are quantum mechanical

methods to solve such problems [9–11, 16]. However, from

the mathematical and computational point of view these

methods are more difficult than approaches based on the

numerical solution of the Boltzmann equation [3, 12, 13].

In this connection we consider the electron transport in the

framework of approximation of the Boltzmann transport

equation. To avoid violation of the conditions mentioned

above it is necessary to consider the electron transport like

the transport of quasi-particles of electron gas. It is one of

standard techniques of the quantum mechanics (see, for

example, Ref. [9]). These techniques allow the mathe-

matical form of equations to be preserved. In this case the

dependence of quasi-particle energy versus its wave vector

E = E(k) is different from one for the case of free electrons

[9].

To obtain the mentioned dependence one can use the

canonic transformation method [9]. However we are find-

ing the dependence E = E(k) in the indirect way. Let us

postulate Eq. (2) using the scattering rates derived taking

into account the high-order quantum effects. To do it we

use the results of Refs. [5–8]. In these studies the scattering

rates in GaAs quantum wires have been calculated taking

into consideration the collisional broadening of the initial

electron quantum states (electron energy uncertainty). At

that according to Refs. [4, 6, 7] the influence of the colli-

sional broadening on the scattering matrix element is too

small to take effect on the scattering rates. So, this influ-

ence can be neglected or be taken into consideration only

in the first order approximation. Then it mainly takes effect

on density of states.

To derive the high precision function E = E(k) it is

necessary to take into account the quantum correlations

between scattering events. It can be done considering that

the sequence of N scattering acts is terminated by (N+1)

one at N fi + ¥ instead of considering that the only

scattering act is terminated by the next one. In this case

according to Refs. [5–8] to take into account the quantum

correlations between scattering events it is sufficient to

consider the collisional broadening of the final electron

quantum states as well as initial and final states identity at

kinitial = kfinal. In result, the equations for the self-consistent

calculation of the function E = E(k) for the one-dimen-

sional electron gas in the electric quantum limit and

thermodynamic equilibrium can be derived by
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qðEÞ¼ qðE;DEðEÞÞ¼ dE

dk

�

�

�

�

�

�

�

�

�1

¼
Z 1

0

q0ðnÞsðn;E;DEðEÞÞdn;

ð6Þ

kðEÞ ¼
Z E

0

qðnÞdn; ð7Þ

EðkÞ ¼ k�1ðEÞ: ð8Þ

Here �h is the Planck constant, DE is the collisional broad-

ening factor [5–8], C is the normalization factor determined

by means of the Fermi golden rule, M is the scattering matrix

element, x is the cyclic phonon frequency, Q is the Heavi-

side function, s is the spectral function [6]. Index ‘‘el’’

corresponds to elastic scattering processes. Indexes ‘‘e’’ and

‘‘a’’ correspond to inelastic scattering processes. Index ‘‘e’’

means phonon emission, and index ‘‘a’’ means phonon

absorption. Indexes ‘‘f’’ and ‘‘b’’ correspond to forward and

backward scattering, respectively. The parameters of scat-

tering mechanisms of the same class are marked with low

index ‘‘i’’. Low index ‘‘0’’ shows that it is necessary to use

the standard dispersion relations for free electrons while

calculating the corresponding physical quantity.

It should be noted that the use of the approximation k0

(E) is valid for the most of dominant scattering mecha-

nisms due to the fact that the dependence of scattering

matrix elements versus k is smooth in the vicinity of k=0

(see, for example, Refs. [6–8]). The use of the exact

function k(E) makes calculation of E = E(k) more com-

plicated from mathematical and computational point of

view due to need of solving of the integral equation instead

of the transcendent one (5). The integral equation is

obtained while substituting the right part of Eq. (7) to the

right part of Eq. (5). It is called forth by the fact that

function q(E) = q(E,DE(E)) is the explicit function of E

and DE (see, for example, Refs. [5–8]) whereas the func-

tion DE(E) is unknown a priori. The latter is determined

by means of solution of Eq. (5). In result, the function q
versus E is an implicit one, indeed. Just because of this

circumstance the integral equation takes place when the

exact function k(E) is used.

Also it should be noted that the Eq. (5) is written in

the terms of the final quantum states instead of the initial

ones [5–8]. Such a representation is made for the con-

venience of scattering rate calculations. Moreover, it

should be outlined that the approximations of the electric

quantum limit and thermodynamic equilibrium are con-

sidered to reduce the unhandiness of the equations.

These approximations are not principle. For example,

considering the non-equilibrium electron gas it should be

taken into account that the population of the final

quantum states is determined by non-equilibrium electron

distribution function instead of the Fermi-Dirac one.

Consequently, the number of terms in Eq. (5) increases

nearly in two times. This number also increases if the

exited states are taken into account due to the terms

bearing relation to intersubband transitions [5].

The expressions for calculation of the rates of elastic Wel

and inelastic We/a electron scattering derived in the

framework of the approximation of stable one-particle

quantum states in the one-dimensional electron gas in the

quantum limit and thermodynamic equilibrium are pre-

sented in the following explicit form:

Wel
i ðEÞ ¼ Cel

i q E;DEðEÞð Þ M
el=f
i k0 DEðEÞ=2ð Þð Þ

�

�

�

�

�

�

2
�

þ

M
el=b
i k0 E þ DEðEÞ=2ð Þð Þ

�

�

�

�

�

�

2
�

1� fFðEÞð Þ;
ð9Þ

We
i ðEÞ ¼ Ce

i HðE � �hxiÞ M
e=ðfþbÞ
i k0ðEÞ; k0ðE � �hxiÞð Þ

�

�

�

�

�

�

2

�

q E � �hxi;DEðE � �hxiÞð Þ 1� fFðE � �hxiÞð Þ;
ð10Þ

Wa
i ðEÞ ¼ Ca

i HðE þ �hxiÞ M
a=ðfþbÞ
i k0ðEÞ; k0ðE þ �hxiÞð Þ

�

�

�

�

�

�

2

�

q E þ �hxi;DEðE þ �hxiÞð Þ 1� fFðE þ �hxiÞð Þ:
ð11Þ

2DE

�h
¼
X

i

2Cel
i M

el=f
i ðk0ðDE=2ÞÞ

�

�

�

�

�

�

2

þ M
el=b
i ðk0ðE þ DE=2ÞÞ

�

�

�

�

�

�

2
� �

qðE;DEÞ 1� fFðEÞð Þþ
�

Ce
i HðE � �hxiÞ M

e=ðfþbÞ
i k0ðEÞ; k0ðE � �hxiÞð Þ

�

�

�

�

�

�

2

qðE � �hxi;DEÞ 1� fFðE � �hxiÞð Þþ

Ca
i HðE þ �hxiÞ M

a=ðfþbÞ
i k0ðEÞ; k0ðE þ �hxiÞð Þ

�

�

�

�

�

�

2

qðE þ �hxi;DEÞ 1� fFðE þ �hxiÞð Þþ

Ce
i HðE þ �hxiÞ M

e=ðfþbÞ
i k0ðEÞ; k0ðE þ �hxiÞð Þ

�

�

�

�

�

�

2

qðE;DEÞ 1� fFðEÞð Þþ

Ca
i HðE � �hxiÞ M

a=ðfþbÞ
i k0ðEÞ; k0ðE � �hxiÞð Þ

�

�

�

�

�

�

2

qðE;DEÞ 1� fFðEÞð Þ
�

;

ð5Þ
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It can be proved that bI fF ¼ 0 if the collisional operator bI is

determined by Eqs. (9)–(11).

Results and discussion

Let us consider some results of application of the devel-

oped theory to calculate the dependence of E(k) and the

electron scattering rates in the electric quantum limit and

thermodynamic equilibrium taking into account the

nonparabolicity. Let us consider GaAs-in-Al2O3 quantum

wires with a straight heterointerface and the cross-section

of 10 · 10 nm2. In this case it is valid to use the approx-

imation of infinite depth quantum well and to neglect the

surface roughness scattering. It is assumed that doping of

GaAs meets both the condition that at considered temper-

ature T = 300 K the Fermi level is approximately 0.2 eV

lower than the energy level of the ground quantum state

and the condition that the ionized impurity scattering can

be neglected. We are also neglecting the acoustic phonon

scattering. Thus, the polar optical phonon scattering is the

last dominant scattering mechanism (see Refs. [6–8]).

Taking into account that the difference between the values

of dielectric permittivity of GaAs and Al2O3 is small the

surface polar optical phonon scattering can be neglected

[15]. The localized phonon modes should be taken into

consideration only [15]. Due to the electric quantum limit

condition it is valid to consider the first phonon mode only,

because others have a very small influence on the intra-

subband electron scattering in the ground quantum state [5,

8, 15].

The results of calculation of the polar optical phonon

scattering rates in GaAs-in-Al2O3 quantum wire are

presented in Fig. 1. They are obtained within the approx-

imations discussed above. The results of Ref. [4] are shown

in Fig. 2. Analyzing these figures one can conclude that the

results obtained by using the developed method are in a

reasonable agreement with the ones obtained by using the

Fock approximation for the self-energy approach based on

Green’s function formalism. As it was noted in Ref. [8]

some discrepancy between the results shown in Figs. 1 and

2 is called forth by considering the bulk phonons in Ref. [4]

whereas we have considered the localized ones. Fig. 1

shows that taking into account the quantum correlations

between scattering events causes the slight step increase of

scattering rates at E � 2�hx . Almost the same feature takes

place in Fig. 2.

To prove the validity of the developed model let us

calculate the rate of electron scattering due to the polar

optical phonons by using both our technique and the

Fock approximation for the self-energy approach under

the same conditions. The nonparabolicity and the Pauli

principle are neglected to simplify the problem. More-

over, we take under consideration a hypothetic case when

the quantum wire is infinitely thin. At that the electron-

phonon coupling constants do not depend on the

components of the electron and phonon wave vectors

parallel to the wire [4]. Taking into account these

assumptions the calculation of the self-energy under the

Fock approximation can be reduced to the transcendent

equation [4, 11]

RðeÞ ¼ ReðeÞ þ RaðeÞ

¼ �i
ffiffiffiffiffiffiffiffi

2m�
p

4�h

 

g2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e� �hx� Rðe� �hxÞ
p

þ g2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eþ �hx� Rðeþ �hxÞ
p

!

;

ð12Þ

Fig. 1 Polar optical phonon scattering rates (We+a = We + Wa). Solid

curve: the results of self-consistent calculations (Eqs. (10), (11)).

Dotted curve: the results obtained in the framework of theoretical

model of Refs. [6, 8]. Dashed curve: the results obtained in the

framework of the Fermi golden rule

Fig. 2 Polar optical phonon scattering rates taken from Ref. [4].

Solid curve: the results obtained in the framework of the Fock

approximation. Dashed curve: the results obtained in the framework

of the Fermi golden rule
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where S is the electron-phonon self-energy, m* is the

electron effective mass, g2
e=a is the electron-phonon

coupling constant corresponding to emission/absorption

process.

The mean relaxation rate of the one-particle exited

state due to electron-phonon interaction can be formulated

as [4, 11]

WRðEÞ ¼ We
RðEÞ þWa

RðEÞ ¼ �
2

�h
Im �ReðEÞ þ �RaðEÞð Þ ¼

� 2

�h
Im �RðEÞð Þ ¼ � 2

�h
Im

Z þ1

�1
RðeÞSðe;EÞde

� �

;

ð13Þ

Sðe;EÞ ¼ �2Im RðeÞð Þ
e� E � Re RðeÞð Þ½ �2þ Im RðeÞð Þ½ �2

�

Z
þ1

�1

�2Im RðeÞð Þ
e� E � Re RðeÞð Þ½ �2þ Im RðeÞð Þ½ �2

de

0

@

1

A

�1

;

ð14Þ

E ¼ �h2k2

2m�
: ð15Þ

Then to calculate the scattering rates in the framework of

the quasi-classical approximation it is necessary to do the

convolution of WS
e and WS

a from the space E2(–¥ , + ¥) to

the space E2(0, + ¥) relative to the final states with zero

energy because in the framework of the quasi-classical

approximation negative values of the electron kinetic

energy are absurd (one can compare, for example, the

results of [6] with the results of [17] for the density of final

states). So the following equation can be derived

~WðEÞ ¼ HðE � �hxÞ
h

We
RðEÞ þHð2�hx� E � EminÞ

We
Rð2�hx� EÞ

i

þHðE þ �hxÞ
h

Wa
RðEÞ

þHð�2�hx� E � EminÞWa
Rð�2�hx� EÞ

i

: ð16Þ

Here Emin is the minimum energy when the quasi-classical

dispersion relation E ¼ �eðEÞ ¼
Rþ1
�1 Sðe;EÞede is still valid

in a sufficient accuracy.

The functions of the considered quantities versus the

energy E at the temperature T = 300K are presented in

Fig. 3. This figure shows that the discrepancy of the

results obtained by means of the different methods is not

principal. It proves the evidence of the model presented in

this study.

The function E = E(k) calculated by means of Eqs.

(5)–(8) under the approximations discussed above is pre-

sented in Fig. 4. For comparison, the function E = E0 (k)

corresponding to free electrons is shown in this figure, too.

It should be noted that formula (8), in general, can be

derived from Eq. (6) accurate to arbitrary constant dE due

to the following expression

qðEÞ ¼ dE

dk

�

�

�

�

�

�

�

�

�1

¼ dðE þ dEÞ
dk

�

�

�

�

�

�

�

�

�1

: ð17Þ

The result presented in Fig. 4 corresponds to dE = 0.

Calculations of the constant dE are out of the scope of

the present study. Nevertheless, it can be assumed that this

constant is determined by the following equation

Z 1

0

fFðEF ;E � dEÞqðEÞ � fFðEF ;EÞq0ðEÞð ÞdE ¼ 0:

ð18Þ

The consequences of this equation are the constant differ-

ence between the Fermi energy EF and the middle of band

Fig. 3 Polar optical phonon scattering rates in infinitely thin quantum

wire. Solid curve: the dependence ~W on E (Eq. (16)). Dashed curve:

the dependence (We+a = We + Wa) on E (Eqs. (10), (11)). Dotted

curve: the dependence WS on E (Eq. (13))

Fig. 4 Energy versus wave vector E = E(k). Solid curve: the

dependence calculated by using Eqs. (5)–(8). Dashed curve: the

function E = E0(k)
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gap as well as conservation of the number of particles in

the quantum system. At the same time according to

Eq. (18) the difference between the middle of band gap and

the ground quantum state energy level calculated by means

of the Schrodinger and Poisson equations [5] should de-

crease at dE, i.e. the shift of the ground quantum state

energy level should occur likewise the Lamb shift or the

shifts of quasi-stationary energy levels take place in per-

turbated quantum systems [9, 18]. For the considered case

this shift is approximately equal to 5 meV.

Both the function dN/dE~ fF(E)q (E) taking into account

the high-order quantum effects and the function dN/dE~ fF
(E)q0(E) neglecting them are presented in Fig. 5 (N is the

linear concentration of electrons in nanowire). This figure

shows that taking into account the high-order quantum

effects causes the absence of the discontinuity of the

second kind at E = 0.

In conclusion, we want to make the note concerning the

experimental verification of our theoretical results. The

latter can be done using the methods based on interaction

of laser radiation with electron gas. So, for example, the

qualitative behavior of the dependence presented in Fig. 5

as well as the decrease of the difference between the

middle of band gap and the ground quantum state energy

level calculated by means of the Schrodinger and Poisson

equations can be tested by using the laser pump-probe

method [19] conformably to undoped or lightly doped

GaAs-in-Al2O3 quantum wires.

Thus, in the present study the self-consistent method of

calculation of the electron scattering rates in nanowires

with the one-dimensional electron gas in the electric

quantum limit is worked out. The developed method allows

both the collisional broadening and the quantum correla-

tions between scattering events to be taken into account.

Using the approximation of stable one-particle quantum

states it is proved that the electron scattering processes

determine the dependence of electron energy versus its

wave vector.
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